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Abstract 

 

Automatic target detection and recognition in hyperspectral imagery offer passive 

means to detect and identify anomalies based on their material composition. In many 

combat identification approaches through pattern recognition, a minimum level of 

confidence is expected with costs associated with labeling anomalies as targets, non-

targets or out-of-library. This research approaches the problem by developing a baseline, 

autonomous four-step automatic target recognition (ATR) process: 1) anomaly detection, 

2) spectral matching, 3) out-of-library decision, and 4) non-declaration decision. 

Atmospheric compensation techniques are employed in the initial steps to compare truth 

library signatures and sensor processed signatures. ATR performance is assessed and 

additionally contrasted to two modified ATRs to study the effects of including steps three 

and four.  Also explored is the impact on the ATR with two different anomaly detection 

methods.   
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AUTOMATIC TARGET RECOGNITION WITH 
HYPERSPECTRAL IMAGES 

 
I.  Introduction 

Background 

“More with less” is a common phrase heard through the halls of many Air Force 

(AF) organizations, their sister-services and other Department of Defense organizations.  

Ironically, the amount of information, including remotely sensed data, provided to the 

warfighter has increased dramatically.  In a recent email, LtGen David Goldfein, AF 

Central Command Commander and Combined Forces Air Component Commander, 

stated that since 2003 remotely piloted aircraft crews have provided persistent ISR 

processing over 50,000 images (Goldfein, 2012).  Of those images hyperspectral imaging 

is sure to be included.   

Hyperspectral images consist of large amounts of spectral and spatial data and 

have been used in numerous applications to include terrain classification, environmental 

monitoring, agricultural monitoring, geological exploration, and surveillance (Stein, 

Beaven, Hoff, Winter, Schaum, & Stocker, 2002).  With decreases in manning levels and 

the ever increasing data load, more efficient algorithms are required to process data.   

 

Problem Statement 

Automatic target recognition’s (ATR) goal is to identify an unknown object, or 

target, from a known signature  (Paul A. S., Shaw, Das, & Mitra, 2003).  From the 

literature it was found that ATR processes for hyperspectral imagery (HSI) consist 

primarily of two steps: anomaly detection and classification.  While there may be other 

steps included in the algorithm, the essence is anomaly detection and classification, i.e., 

Chang and Chiang outline a three-stage process which includes anomaly detection, 

clustering of anomalies, and classification (Chang & Chiang, 2002).  This thesis 
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investigates a four-step ATR process which consists of the common anomaly detection 

and classification steps and is followed by an out-of-library (OOL) decision step and 

finally a non-declaration (NDEC) decision step.  The final two steps are added to assess if 

there is any performance improvement to the ATR process.   

 

Methodology 

The methodology the ATR consists of is the aforementioned four steps and a step 

zero.  The steps are broken down as follows:  

Step 0:  Loading HSI data and library reference signals 

Step 1a: Region of Interest Generator (anomaly detection) 

Step 1b: Atmospheric Compensation Estimation  

Step 2: Matched Filtering for initial classification 

Step 3: OOL decisions 

Step 4: NDEC decision for final classification 

The measures of performance for the ATR are the commonly used true positive 

fractions and false positive fractions, which form a receiver operating characteristic 

(ROC) curve.   

 

Research Objectives 

 The focus of this effort is to develop a baseline, autonomous four-step ATR 

process for HSI and to assess the performance.  A comparative ATR assessment given 

two different region of interest generators will also be provided.  Finally, an assessment 

of how the incremental inclusion of the OOL step and NDEC step affect ATR 

performance is given.   
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Overview 

This thesis contains five chapters: an introduction, a literature review, 

methodology, results, and a discussion.  The introduction provides a brief overview of the 

thesis. The literature review lays the ground work of previous HSI research to include 

HSI basics, radiative transfer and atmospheric compensation, anomaly detection, 

classification, OOL decision techniques, and NDEC decision methods.  The methodology 

walks through the process to obtain the baseline, four-step ATR process.  The results 

provide answers to the research objectives.  The last chapter provides the contributions of 

the thesis to ATR for HSI along with ideas for future research.   
 
  



4 
 

II.  Literature Review 
 

This chapter describes significant contributions applicable to developing an ATR 

process for HSI.  Relevant literature is outlined and described in the following 11 

sections:  HSI Basics, Hyperspectral Digital Imagery Collection Experiment (HYDICE), 

Radiative Transfer, Image Collection, Reference Library Creation, Atmospheric 

Compensation, Anomaly Detection, Region of Interest Generator, Classification, Out-of-

Library Decision, and Non-Declaration Decision.   

 

Hyperspectral Basics 

All objects reflect, emit, and absorb electromagnetic (EM) energy; the degree at 

which these things take place is dependent upon the object’s material composition.  The 

most familiar component of the EM spectrum consists of the wavelengths 0.4 – 0.7 μm, 

the visible region (V).  Figure 1 shows this portion of the EM spectrum as well as the 

entire spectrum.  Typical EM spectrum areas of interest, in remote sensing, include the 

visible to near-infrared (VNIR) region between 0.4 and 1.1 μm, the shortwave infrared 

(SWIR) region between 1.1 and 3 μm, midwave-infrared (MWIR) from 3 – 5 μm, and the 

longwave-infrared (LWIR) spectrum from 5 – 14 μm.  

 

 
Figure 1.  Electromagnetic Spectrum, taken directly from (Landgrebe, 2003)  
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An example of a system that works in the visible region would be a digital 

camera; which captures information corresponding to reflected light in the red, green, and 

blue wavelength bands.  For a single image, specifically for each pixel of the image, the 

information collected consists of the amount of energy reflected, in each discrete, 

noncontiguous band.  When the information from the three bands is overlaid upon each 

other an image takes the form of what we are used to seeing.   

A digital camera can be considered a simple multispectral imaging system.  A 

multispectral imaging system typically operates in three to 20 different EM bands.  

Typically, multispectral sensors (such as those on LandSAT) collect visible and NIR 

bands (Connor & Mooneyhan, 1985).  There is unfortunately no rule-of-thumb for the 

number of bands that defines a multispectral image; the number of bands is not 

necessarily important, the primary definition of a multispectral imaging system is having 

discontinuous bands with large spectral bandwidths (Eismann, 2011).  Spectral 

bandwidths can be defined for our purposes as the spectral sample period between 

collected wavelengths; for multispectral systems this is on the order of 100nm (Connor & 

Mooneyhan, 1985).  A large spectral bandwidth such as this provides a low spectral 

resolution and is not suitable for detecting fine spectral features (Connor & Mooneyhan, 

1985) (Eismann, 2011). 

A hyperspectral image is essentially a continuous spectral and spatial image 

collected over a large portion of the EM spectrum.  Instead of operating in three spectral 

bands in the visible region or multiple distinct bands covering multiple parts of the EM 

spectrum, HSI spans a large contiguous portion of the EM spectrum (Eismann, 2011).  

HSI offers finer spectral resolution, with a spectral bandwidth typically on the order of 

10nm (Lillisand & Kiefer, 2000) (Manolakis & Shaw, 2002) (Eismann, 2011).  Spectral 

resolution is limited by a number of factors including characteristics of the focal plane 

array, optical system parameters, etc (Eismann, 2011).  It is the capability to capture 
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image data in this fashion that also distinguishes multispectral and hyperspectral images.  

The combination of HSI covering a large portion of the EM spectrum and fine spectral 

resolution means HSI data typically has a larger number of spectral bands when 

compared to multispectral sensors due to its physical properties (Eismann, 2011).  In 

many applications, e.g. HYDICE (defined in the next section), HSI operates in over 200 

contiguous bands.   

Hyperspectral remote sensing can be conceptualized as a combination of two 

sensing modes: panchromatic and spectroscopy (Eismann, Stocker, & Nasrabadi, 2009) 

(Eismann, 2011).  Panchromatic imaging captures spatial radiance information about a 

scene in one wavelength band to create a black and white image (Eismann, 2011).  

Typically this occurs over the visible band.  Spectrometers measure the variation of light 

from a one dimensional source across multiple wavelengths, enabling detection of 

molecular composition (Eismann, 2011).  In essence hyperspectral sensors can be 

considered as multiple one dimensional spectrometers arranged to capture spatial and 

spectral information; each spatial pixel therefore captures the entire spectral profile of a 

given location.   

There are three primary purposes for HSI remote sensing, anomaly detection, 

change detection and spectral signature matching (Smetek & Bauer, 2008).  Of interest 

herein are anomaly detection and spectral signature matching.  Fundamentally we are 

interested in extracting information that can be used to detect anomalies that are 

statistically different from the background and identifying them through reference library 

signatures (Eismann, 2011).  

 

Hyperspectral Digital Imagery Collection Experiment  

The imagery data set used for this study is from the HYDICE imaging 

spectrometer, specifically images taken from the Forest Radiance I and Desert Radiance 
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II datasets.  Used for the advancement of defense applications for hyperspectral remote 

sensing in VNIR/SWIR, HYDICE provides spectral imaging over 400 – 2500 nm from a 

fixed wing aircraft platform, using pushbroom collection (Rickard, Basedow, Zalewski, 

& Silverglate, 1993) (Eismann, 2011).  The sensor generates swath widths of 320 pixels 

wide with 210 bandwidths per pixel (Eismann, 2011).  A pictorial representation of the 

pushbroom technique is in Figure 2.   

 

 
Figure 2.  Pushbroom scanning technique (Bihl, unpublished) 

 

Radiative Transfer 

The energy received by an HSI sensor is called radiance energy; a unit of power per 

unit area per solid angle (Eismann, 2011). Because light which reaches a sensor passes 

through the atmosphere and reflects off of objects (termed scattering), data reaching a 

sensor is not spectrally pure (Eismann, 2011). The process in which this occurs is termed 

“radiative transfer” (Eismann, 2011).  Depending on the reference and descriptions, 

radiative transfer quantities are divided into either three (Smetek, 2007), four (Kerekes, 

1998) or five (Eismann, 2011) segments and describe the radiative transfer of spectral 

radiance reaching a sensor.  This is not to say that there is dispute about what factors are 
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present, merely how they are combined.  These can be generally described as (Eismann, 

2011), (Smetek, 2007), and (Kerekes, 1998):  

1. Directly reflected radiance off the target of interest to the sensor (Eismann, 2011) 

(Kerekes, 1998) (Smetek, 2007); 

2. Diffuse or indirect solar radiance first scattered by the atmosphere then reflected 

off the target into the sensor (Eismann, 2011) (Kerekes, 1998); 

3. Scattered radiance which first scatters off of an adjacent object on the ground, 

then reflects off the target into the sensor (Eismann, 2011); 

4. Background radiance from adjacent objects on the ground reflected into the 

sensor (Eismann, 2011) (Kerekes, 1998) and; 

5. Upwelling or path radiance is radiance scattered by the atmosphere directly to the 

sensor without reaching an object (Eismann, 2011) (Smetek, 2007) (Kerekes, 

1998).   

Smetek (Smetek, 2007) combined these terms into three categories corresponding to 

Eismann (Eismann, 2011) and Healey and Slater’s (Healey & Slater, 1999) grouping of 

the first type as direct solar irradiance, the second through fourth will be called indirect 

downwelling radiance, and the fifth being upwelling path radiance.  The general 

radiative transfer model is visually depicted in Figure 3.   

 



9 
 

 
Figure 3.  Radiative transfer process for the reflective case, taken directly from (Eismann, 

2011) 

 

Image Collection  

Once reaching the sensor, radiance data passes through the optics of the HSI 

system being focused on the focal plane array (Eismann, 2011).  The focal plane array 

contains detectors which converts collected light into an electrical signal (Eismann, 

2011).  The collected electrical signal is gathered by system electronics and manipulated 

into a data object known as an “image cube” or “hyper cube.”  The first two dimensions 

of the image cube account for the spatial dimensionality.  They are referenced by m 

number of rows and n number of columns.  The third dimension, p, of the image cube 

refers to the span of spectral bands collected by the HSI sensor.   

For analysis, it is computationally simpler to manipulate two-dimensional 

matrices versus three or more dimensions.  Therefore, the image cube data is mapped to a 

two-dimensional data matrix, X, such that each element corresponds to the signature 

reading for a single image pixel location with a different band.  For example, for the 

element xmnp in the data matrix in Figure 4, p is the band for the pixel located in row m, 

column n.  Once the data matrix has been generated standard multivariate analysis 
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techniques can be used to analyze the data.  Such techniques could include principal 

component analysis (PCA), discriminant analysis, and cluster analysis.   

Each row of X is commonly referred to as a pixel vector.  These pixel vectors can 

then be plotted against the collected spectral bands to create a spectral signature for each 

of m×n pixel locations.  For example, in Figure 4 the three lines of the Spectral 

Signatures plot could represent the signatures of three different materials (Smetek & 

Bauer, 2008).  The entire process is depicted in Figure 4.   

 

 
Figure 4.  The basic hyperspectral imaging process and data representation, taken directly 

from (Smetek & Bauer, 2008) 

 

Reference Library Creation 

Most reference signature libraries are collected in controlled laboratory 

environments using spectrometers or semi-controlled environments on the ground using 

portable field spectrometers.  This poses a challenge for comparisons with collected 

images, since the spectral signatures do not contain atmospheric effects; they contain 
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only what is known as reflectance.  Reflectance signatures are those signals that would be 

recorded by a spectrometer held at close proximity to the material of interest (SpecTIR: 

Imagery with Substance).  Therefore, for spectral signature comparison converting 

reflectance to radiance by estimating the atmospheric effects in an image must take place.   

 

Atmospheric Compensation  

The presence of unknown parameters such as illumination and atmospheric 

conditions are present in all images and need to be addressed to accomplish the goal of 

extracting a material’s spectral properties (Eismann, 2011).  Atmospheric compensation 

is performed to convert radiance energy to reflectance, or vice versa, with limited 

knowledge of illumination and atmospheric conditions.  There are two categories for 

atmospheric compensation: in-scene methods and model-based methods.  For this 

research we will be concerned with applying in-scene methods due to the ability to 

automate this process.  

In-Scene Methods 

Of the two categories the in-scene method is easier to intuitively understand and 

less computationally complex.  In-scene methods require some a priori spectral 

information concerning the expected materials within the image.  This information serves 

to guide the estimation of the atmospheric conditions.  Two primary methods will be 

considered: the empirical line method and vegetation normalization.  Both methods use 

in-scene ground objects and corresponding known reference reflectance data to compute 

atmospheric absorption properties (Eismann, 2011).  The goal of both methods is to 

create a gain, 𝑎�(𝜆), and offset, 𝑏�(𝜆), for use in a linear approximate, 

 

 𝑅𝑎𝑑(𝜆) = 𝑎�(𝜆) ∙ 𝑅𝑒𝑓𝑙(𝜆) + 𝑏�(𝜆) (1) 
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which can be applied to a reflectance library to convert library reflectance to radiance 

units.  The gain and offset are respectively calculated by 

 

 𝑎�(𝜆) =  
𝐿2(𝜆) − 𝐿1(𝜆)
𝜌2(𝜆) − 𝜌1(𝜆)

 (2) 

 

and  

 

 𝑏�(𝜆) =  
𝐿1(𝜆)𝜌2(𝜆) − 𝐿2(𝜆)𝜌1(𝜆)

𝜌2(𝜆) − 𝜌1(𝜆)
 (3) 

 

where ρi are known reflectance signatures and Li are corresponding radiance 

measurements.  The gain and offset equation elements are formed in one of two ways.  

First, is the empirical line method (ELM) and second, vegetation normalization (VN), 

which requires in-scene detected vegetation to serve as a known quantity.   

Empirical Line Method 

ELM is directly related to Equation (1) and used for reflectance estimation in the 

VNIR/SWIR spectral regions.  This method requires at least two image pixels with 

known reflectance signatures, ρi, and corresponding radiance measurements, Li, to obtain 

a gain and offset estimation.  This technique can be further applied when more than two 

known reflectance signatures are available using linear least-squares regression analysis.  

Unfortunately, in regards to a fully automated process, having known reflectance 

signatures becomes its primary limitation (Eismann, 2011).  Because of this limitation 

this study will focus on the use of VN to arrive at the gain and offset values.  

Vegetation Normalization 

To locate vegetation within an image normalized-difference vegetation index 

(NDVI) is applied.  NDVI was first introduced by Rouse et al. while monitoring 
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vegetation conditions to assess the effects on regional growth conditions (Rouse, Hass, 

Schell, & Deering, 1973).  A high NDVI score is an indication of healthy vegetation 

(Eismann, 2011).  For example Figure 5 (a) shows the true red, green, blue (RGB) 

spectral representation of the HYDICE image ARES3F and Figure 5 (b) is the ARES3F 

image based on NDVI scores.  Here we see that the vegetation areas have higher overall 

NDVI scores than the dirt patch in the middle of the image and the road ways on the 

right-hand side of the image.   

 

 

(a)                                                              (b) 
Figure 5.  HYDICE image ARES3F a) RGB representation, b) NDVI representation 

 

Vegetation normalization builds upon ELM.  Instead of manually locating image 

pixel(s) of known reflectance signatures, vegetation normalization uses vegetation as one 

of the reference signatures.  This is accomplished under the assumption that vegetation 

reflectance signatures have a distinct shape and most images will contain a fair amount of 

vegetation.  To identify the vegetation the NDVI equation,    
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 𝑁𝐷𝑉𝐼 =  
𝐿𝑝(860 𝑛𝑚) − 𝐿𝑝(660 𝑛𝑚) 
𝐿𝑝(860 𝑛𝑚) + 𝐿𝑝(660 𝑛𝑚)  (4) 

 

is applied (Eismann, 2011).  Lp(860 nm) and Lp(660 nm) refer to the sensor readings 

(signatures) of a pixel in the NIR and red light bands, respectively.  Next, only high 

NDVI values are considered based on a given threshold, relative to each image; this 

vector is then averaged to represent the radiance measurement for vegetation in the image 

(Eismann, 2011).  This is the first radiance signature used to calculate the gain and offset.   

The second radiance signature is determined by simply creating a shade spectrum 

such that the minimum image radiance value is used for each frequency band (Eismann, 

2011).  The first known reflectance signature applied is a known vegetation signature 

available from a truth library.  The second is simply a vector of zeros of similar 

dimensions as the vegetation signature.  With the four signatures established ELM 

Equations (2) and (3) can now be used to calculate the gain and offset.   

Limitations of NDVI include the fact that NDVI will capture pixels that include 

“partially illuminated and shadowed vegetation spectra” as well as “fully illuminated 

vegetation spectra”.  Therefore, these pixels will not accurately match reference 

vegetation spectrum.  Another limitation deals with the consistency of the spectral 

characteristics of healthy vegetation.  Ideally, the spectral characteristics could be 

represented by a single reflectance spectrum; however, this is not the case.  Figure 6 

shows the variability of a few different types of vegetation (Eismann, 2011).   
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Figure 6.  Vegetation Reflectance Spectra, taken directly from (Eismann, 2011) 

 

Qinjiu and Xiangjun note that since the concept of vegetation indices were 

introduced more than 40 have been designed (Qinjiu & Xiangjun, 1998) (Du, Zhang, 

Yuan, Liu, & Zhang, 2007).  Additional vegetation indices were created to account for 

other situations include the Bare Soil Index (Chen et al., 2004), Soil Adjusted Vegetation 

Index (SAVI) (Huete, 1988), and Transformed Difference Vegetation Index (TDVI) 

(Bannari, Asalhi, & Teillet, 2002).   

Model-Based Methods 

Model-based methods can be quite accurate in regards to capturing atmospheric 

conditions such as illumination, transmission, and path radiance.  They use a radiative 

transfer model, such as MODTRAN, as the basis for atmospheric compensation, which 

estimates various atmospheric conditions at the time an image was acquired (Smetek, 

2007).  While the atmospheric conditions are numerically computed, there are a number 

of atmospheric conditions that must be precisely specified, which are typically unknown  

(Ientilucci & Bajorski, 2006).  The benefit of the model-based methods is the spectral 

variation of the unknown atmospheric conditions is constrained, thus making estimation 
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of these conditions easier to deal with in some scenarios (Eismann, 2011).  However, 

estimating these unknown conditions can be time consuming (Ientilucci & Bajorski, 

2006), requires specific knowledge of the scene conditions, and does not allow for 

automation to be completed in a timely manner, a goal of this study.  

 

Anomaly Detection  

Detection is formally defined as the act of discovering or noticing the presence of 

something hidden or hard to see (Merriam-Webster).  In the case of anomaly detection, 

the “something hidden or hard to see” is a target of interest, in other words a statistical 

anomaly when compared to the background.  The anomaly can be classified one of two 

ways; either a target is present or is not present (Shaw & Manolakis, 2002).   

There are two types of target detection algorithms for HSI: spectral anomaly 

detection algorithms and spectral matching detection algorithms (Manolakis, Lockwood, 

Cooley, & Jacobson, 2009).  Anomaly detection of course is categorized as the former.  

An anomaly is detected when an image pixel(s) is spectrally different from the remaining 

pixels in the image; those remaining pixels are also called background pixels.  If there is 

no a priori information regarding the anomaly signatures the background is modeled.  

The potential anomaly signature is compared to the background signature and if it is not 

well-described by the background model, an anomaly is declared (Madar, Kuybeda, 

Malah, & Barzohar, 2009) (Chang & Chiang, 2002).  While there are a number of 

different background models or anomaly detectors there are two basic categories: the 

local anomaly detector and the global anomaly detector (Rosario, 2006).   

Local Anomaly Detector 

The local anomaly detector uses processing windows to characterize the 

background pixels in the form of pixel vectors.  The center pixel vector is compared to 

the remaining pixel vectors in the window to determine if an anomaly is present.  The 
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window moves to the next pixel and an anomaly determination is made again.  This 

process continues until each pixel in the HSI image has been characterized as background 

or anomaly (Smetek, 2007).   

The primary advantage of the local anomaly detector is a high rate of anomaly 

detection.  This is due to a high number of degrees of freedom allowing for the 

background model to be tightly fitted to the background data.  However, this can also be 

a disadvantage because over-fitting can occur, causing a high false-alarm rate (Madar et 

al., 2009).  Over-fitting occurs when the model (or detector) too acurately models the 

training data and essentially causes no variation in the window pixels (Ratner).  False-

alarm rates can also increase due to isolated spectral anomalies.  For example, a grass 

plain region with a few trees will detect the trees as anomalies even if the trees exist in 

another region (Stein, Beaven, Hoff, Winter, Schaum, & Stocker, 2002).  “Generally, this 

[high false-alarm rate] happens due to the well known phenomenon that the number of 

training data pixels has to be significantly higher than the number of the model degrees of 

freedom. Since the number of free parameters in local background models is proportional 

to the data size, the model over-fitting problem is almost inevitable.” (Madar et al., 2009)   

Another disadvantage of the local anomaly detector is the decreased ability to 

detect large, multiple-pixel anomalies.  In order to detect such anomalies a large 

processing window is needed so that the anomalies do not dominate the window 

statistics.  But if the window is too large the clutter may be too sufficient to detect an 

anomaly (Smetek, 2007).  The Reed-Xiaoli detector is one of the most common local 

anomaly detection algorithms.   

Reed-Xiaoli Detector   

The Reed-Xiaoli (RX) detector was first introduced by Irving S. Reed and Xiaoli 

Yu in 1990 (Reed & Yu, 1990).  It has since served as the anomaly detection standard.  

Originally adapted for multispectral sensors it was proven that it was a viable means for 
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HSI too.  Summarized by Stein el al. (Stein et al., 2002) and then later by Eismann 

(Eismann, 2011) and Smetek (Smetek, 2007), the RX detector was derived using a 

generalized likelihood ratio test (GLRT).  Of importance, when it is assumed that the 

processing window pixel vectors are normally distributed with mean µ and covariance S 

Reed and Yu show that the GLRT reduced to:  

 

 𝑅𝑋(𝒙) = (𝒙 − 𝝁�)𝑇 �
𝑁

𝑁 + 1
𝑆 +  

𝑁
𝑁 + 1

(𝒙 − 𝝁�)(𝒙 − 𝝁�)𝑇�
−1

(𝒙 − 𝝁�) (5) 

 

where, x is the exemplar pixel vector, 𝝁� a window mean vector, S the window covariance 

matrix and N  the number of pixel vectors in the processing window (Smetek, 2007).  As 

N approaches infinity, Equation (5) converges to the Mahalanobis distance (MD):   

 

 𝑀𝐷(𝒙) = (𝒙 − 𝝁�)𝑇S−1(𝒙 − 𝝁�) (6) 

 

with variables the same as Equation (5).  For the remainder of the document MD will be 

referred to as RX.  Therefore, the RX detector essentially measures the distance between 

the pixel under test and the estimated background mean using the estimated covariance 

matrix of the current processing window (Smetek, 2007).   

RX scores are then compared to a given threshold, Trx, and if RX is greater than 

Trx, the pixel is labeled as an anomaly.  Trx is based on the χ2-distribution with p degrees 

of freedom and p is the dimensionality of the data (Smetek & Bauer, 2008).  

In addition to the previously stated limitations of local anomaly detectors, the RX 

detector’s Gaussian data assumption is not usually a good fit to the data and leads to the 

aforementioned false alarms issues.  Additionally, estimating a background probability 
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density function for large dimension HSI data is difficult since the sample size increases 

exponentially with the number of spectral bands (Amit Banerjee & Meth, 2007).   

The primary limitation of the RX detector is proper processing window size 

selection.  For a reasonable estimate of the covariance matrix, the processing window 

must contain at least as many pixels as the number of dimensions of the image (Smetek, 

2007).  If the number of pixels is less than the dimensions, the inverse covariance matrix 

will be ill-conditioned and unstable.  A general-rule-of-thumb for the number of pixels is 

about ten times the number of bands (Borghys & Perneel, 2010).  Additionally, Borghys 

and Perneel (Borghys & Perneel, 2010) compare three different methods of work to 

improve the ill-conditioned and unstable limitation of the RX detector: 1) Prior Principal 

Component Analysis, 2) Diagonal Loading (DL), and 3) Singular Value Decomposition.  

Their results suggest that DL give the best results with respect to anomaly detection 

percentage in most scenarios.   

Other RX-based detectors that also attempt to correct these limitations include 

(Smetek & Bauer, 2008): (Chang & Chiang, 2001), (Hsueh & Chang, 2004), (Riley, 

Newsome, & Andrews, 2004), (Kwon & Nasrabadi, 2005), (Gaucel, Guillaume, & 

Bourennane, 2005), (Schaum, 2004), (West, Messinger, Ientilucci, Kerekes, & Schott, 

2005), and (Schaum, 2006).   

Global Anomaly Detector  

Unlike the local anomaly detector where each image pixel is compared to only 

background pixels within the current processing window, the global anomaly detector 

attempts to model the entire image background and then test each pixel to determine if it 

is an anomaly (Smetek, 2007).  With this approach theoretically it is better at detecting 

large, multi-pixel anomalies and decreases the probability of false alarms due to scene 

clutter (Smetek & Bauer, 2008).  Similar to the local anomaly detector, the global 

anomaly detector also has issues with isolated anomlaies in an open region; however, this 
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occurs when the anomaly spectral signature is similar to that of the background signature 

(Stein et al., 2002).  

Autonomous Global Anomaly Detector 

Recently developed by Johnson (Johnson, 2008), a global anomaly detector is the 

Autonomous Global Anomaly Detector (AutoGAD).  AutoGAD is made up of four 

phases: Feature Extraction I, Feature Extraction II, Feature Selection, and Identification.  

The first phase uses PCA as a dimensionality reduction tool (Johnson, 2008).  Its goal is 

to create linear combinations of the original data variables that account for as much 

variability as possible.  The linear combinations created by PCA are orthogonal to each 

other and account for successively smaller amounts of the total variation in the data.  The 

first principal component (PC) accounts for the most variation (Dillion & Goldstein, 

1984).   

The second feature extraction phase uses Independent Component Analysis (ICA) 

to further project the data to a new orthogonal and statistically independent subspace.  

Within this new subspace, phase three chooses features that correspond to anomalies 

based on statistical considerations, such as kurtosis.  Finally, the pixels are identified as 

targets based on the features selected (Johnson, 2008).  For more information regarding 

other global anomaly detectors see Smetek and Bauer (Smetek & Bauer, 2008), Madar et 

al. (Madar et al., 2009), and Rosario (Rosario, 2006).   

 

Region of Interest Generator  

A region of interest (ROI) is essentially a pixel or set of pixels in a hyperspectral 

image in which a potential anomaly has been detected.  For this study we will assess the 

local anomaly detector RX and the global anomaly detector AutoGAD for the ROI 

generators.  Because the purpose of this study is to develop a baseline ATR, in the future 



21 
 

a different local anomaly detector could be used in their place to assess for possible ATR 

improvement.   

 

Classification  

Classification “is the process of assigning a label to an observation (usually a 

vector of numerical values)”.  Classifiers can be characterized as either “hard” or “soft.”  

A hard classifier assigns only one label to each image pixel whereas a soft classifier 

assigns multiple labels to each pixel (Shaw & Manolakis, 2002).   

Recall there are two types of target detection algorithms for hyperspectral 

imaging data.  Classification falls into the category of spectral matching detection 

algorithms (Manolakis, Lockwood, Cooley, & Jacobson, 2009).  Spectral matching, 

unlike anomaly detection, requires the presence of one or more known reference 

signatures for the target of interest.  Reference signatures usually come from a spectral 

library created in a laboratory and/or field experiments which are measured in the 

reflectance spectrum because they do not contain atmospheric conditions (Eismann, 

2011) (Manolakis, Lockwood, Cooley, & Jacobson, 2009).  The reference signature can 

also come from an identified in-scene target pixel or a radiance spectrum measured from 

a different image (Manolakis, Lockwood, Cooley, & Jacobson, 2009) (Eismann, 2011).  

In the prior case, atmospheric compensation converts from radiance spectrum to a 

comparable reflectance spectrum by adding the estimated missing atmospheric 

component (Eismann, 2011).   

Anomalous pixels detected from the ROI generator are compared to the reference 

signature(s) to see if there is a “match.”  If there is a high degree of correlation a label is 

assigned to that pixel, or group of pixels (Manolakis, Lockwood, Cooley, & Jacobson, 

2009).  This matching can be completed using various algorithms (Eismann, 2011) 

(Manolakis, Lockwood, Cooley, & Jacobson, 2009).   
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Matched Filter 

A basic form of a matched filter (MF) with regards to global statistics is 

(Eismann, 2011),   

 

 𝑀𝐹 = (𝒔 − 𝝁𝒃)𝑇Σb−1(𝒙 − 𝝁𝒃) (7) 

 

where,  s is the known vector reference signature, μb the mean vector of the background, 

Σb the covariance of the background and x the pixel (target) of interest.  The dimension of 

μ and Σ is p, number of frequency bands.  Unknown parameters, s, μb, and Σb typically 

need to be estimated (Manolakis & Shaw, 2002) (Manolakis, Lockwood, Cooley, & 

Jacobson, 2009).  One typical estimation technique is to calculate μb and Σb based on the 

entire image, called global estimation (Eismann, Stocker, & Nasrabadi, 2009).  

Obviously, there are issues with this technique if the image has a large number of 

spectrally different objects as the estimate(s) will be skewed.  Other techniques used for 

background mean and covariance estimation include local and block-wise (Eismann, 

Stocker, & Nasrabadi, 2009).  Similar to the RX detector, the MF is a measure of the 

distance between the pixel of interest and the known reference signature.  Generally 

speaking a high MF score is a similarity measure of s and x.  A threshold can then be 

applied to compare the MF score to.  If the score is above the threshold a “match” is 

made and if the score is below the threshold a “match” is not made.   

Adaptive Matched Filter 

Another spectral matching algorithm is the adaptive matched filter (AMF) which 

was originally proposed by Robey et al.  (Robey, Fuhrmann, Kelly, & Nitzburg, 1992).  

When dealing with local statistics, as with the RX detector, a modification should be 

applied (Eismann, 2011).  This modified equation is,  
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 𝐴𝑀𝐹 =
[(𝒔 − 𝝁𝒃)𝑇Σb−1(𝒙 − 𝝁𝒃)]2

(𝒔 − 𝝁𝒃)𝑇Σb−1(𝒔 − 𝝁𝒃)  (8) 

 

The data elements of the AMF are the same as Equation (7), with normalization included.  

The AMF was used for this study because during initial ATR development MF scores 

were not as high as expected for true anomalies.  This will be discussed in more detail in 

Ch. III, Step 2.  

 

Out-of-Library Decision 

Once a pixel vector, or set of pixel vectors, has been labeled as an anomaly and a 

spectral “match” has been made it will be run through an OOL detector.  An OOL label is 

given to an anomaly that does not closely resemble at least one of the objects within the 

target library (Friend, 2007).  The target library is made up of different classes from 

targets the detector has been trained to recognize.  The difficulty in developing this class 

library is the inability to classify every known target.  On the other hand, if an anomaly 

resembles an object within the target library an in-library (IL) label is given (Turnbaugh, 

2009) (Leap, 2008).   

In the literature there are a number of different OOL detector methodologies.  

These methodologies can be divided into three categories (Friend, 2007). 

1. Transparent Method is based on complete knowledge of all anomaly classes. 

2. Semi-Blind Method is based on partial knowledge of the anomaly classes.  For 

instance an OOL label would be decided upon descriptive statistics of the 

anomaly.   

3. Blind Method is based on IL objects, no prior knowledge of the anomaly class and 

anomaly characteristics.   
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For this study we will simply focus on the use of a threshold for an OOL decision, 

such a method is considered blind because no a priori knowledge of the anomaly classes 

is required.  Once a matched filter score is obtained it is compared to a given threshold.  

If the filter score is less than the threshold the pixel of interest is given an OOL label.  

Conversely, if the pixel of interest’s filter score is greater than or equals the threshold an 

IL label is given.  As with the RX detector, this method and the following MD OOL 

method could be replaced with a different method to assess the ATR for possible 

improvement. 

Another OOL method uses the MD score, Equation (6), to identify an anomaly as 

out-of-library.  Similar to the threshold technique, the MD is a Blind method.  

Comparable to Equation (6), the MD equation can be written as,  

 

 𝑑𝑖 = (𝒙 − 𝝁�𝒊)𝑇𝐶𝑖−1(𝒙 − 𝝁�𝒊) (9) 

 

The difference here is C is the covariance matrix for target i, for targets one to i.  

Therefore, the OOL detector also measures the distance between the pixel under test, x, 

and the estimated class distribution mean, 𝝁�𝒊, and estimated class covariance matrix, C.  

The MD is then compared to a given threshold, Tmd.  If the MD is less than the threshold 

an OOL label will be given to x.   

Unfortunately the MD is quite sensitive to outliers, even just one outlier; Smetek 

(Smetek, 2007) explains three different types of issues that can occur when outliers are 

present in data: 1) breakdown point, 2) masking effect, and 3) swamping effect.  The 

breakdown point of an estimator is the fraction of outliers that can be present in a sample 

before the estimator values are meaningless. The masking effect occurs when a very 

strong outlier distorts a non-robust mean and covariance estimates so much that a weak 

outlier does not appear as an outlier in regards to the Mahalanobis distance.  Finally, the 
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swamping effect occurs when an outlier distorts the mean and covariance estimates such 

that even a non-outlier is incorrectly labeled as an outlier.  Two basic remedies to these 

issues involve using robust mean and covariance estimates and the use a different OOL 

method not based on the Mahalanobis distance if outliers are suspected.  Additional OOL 

methods are described by Albrecht (Albrecht, 2005), Friend (Friend, 2007), and 

Turnbaugh (Turnbaugh, 2009).  

 

Non-Declaration Decision 

After a pixel is declared an anomaly, a matched filter score has been given, and if 

it has been declared IL, a declaration (DEC) or NDEC decision can be made.  A NDEC 

decision is a label given to an object (or in our case an anomaly pixel vector) such that its 

spectral signature is similar to more than one other object represented in the library of 

known objects (Friend, 2007).   

For this study the NDEC decision will also be based on a threshold.  Here a 

difference will be taken between the two highest matched filter scores for the anomaly.  

This difference will then be compared to the threshold.  If the matched filter score is 

greater than or equals the threshold, the pixel of interest can be declared as a specific 

target.  If the score is less than the threshold, a NDEC label will be given as the closeness 

in matched filter scores would indicate the pixel of interest too closely resembles two 

different target classes.  For the rest of this section, we will briefly touch on previous 

work completed in the area of non-declarations, to include the NDEC procedure 

developed by Turnbaugh (Turnbaugh, 2009).  

The first method by Chow (Chow, 1970) stated that by reducing the number of 

objects to be classified due to difficulty in label assignment can actually improve 

classification accuracy.  Based on an optimum rule for rejection, a NDEC label would be 

given if the maximum of a set of posterior probabilities is less than some threshold T.  
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The number of posterior probabilities is based on N different given classes.  In equation 

form this is described as  

 

 𝑥 ∉  𝑤𝑖   if     max
𝑘∈1,2,…,𝑁

𝑃(𝑤𝑘|𝑥) =  𝑃(𝑤𝑖|𝑥) < 𝑇 (10) 

 

where 𝑤𝑖 is the (winning) posterior probability for class i, x the current exemplar, 

𝑃(𝑤𝑖|𝑥) the max posterior probability for class i given x, and T ∈  [0, 1] (Chow, 1970). 

Then in 2000, Fumera et al. (Fumera, Roli, & Giacinto, 2000) expanded on this 

method where there is a threshold for each class, 𝜃𝑖.  Thus the new equation for a NDEC 

label is 

 

 max
𝑘∈1,2,…,𝑁

𝑃�(𝑤𝑘|𝑥) =  𝑃�(𝑤𝑖|𝑥) < 𝜃𝑖      where     𝜃𝑖 ∈  [0, 1] (11) 

 

where the other equation elements are similar to Equation (10).  A NDEC decision label 

is given if the maximum of a set of posterior probabilities is less than the class threshold, 

𝜃𝑖.  The rationale that Fumera et al. introduce for the improvement was if Chow’s 

assumption of perfect posterior probabilities was violated, no one threshold could be used 

to find an optimal decision threshold (Turnbaugh, 2009).   

Two other methods, Laine (Laine, 2005) and Albrecht’s (Albrecht, 2005) were 

centered on a window-based NDEC method where the window serves as a rejection 

region.  The rejection window is based on a ROC curve analysis.  For example, Figure 7 

depicts a two class problem where the rejection region is labeled θREJ.  Based on the ROC 

curve analysis if a θ score falls within the θREJ region a NDEC label is given.  If a θ score 

is between 0 and 1 and not within θREJ, a label can be given.  For this example a score 

between θup and 1 indicates the target is labeled “T.”  If the score is less than θlow and 

greater than 0 an “F” label is given.   
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Figure 7.  Example Rejection Region for Two Class Problem, taken directly from (Laine, 

2005) 

 

An alternative to Laine (Laine, 2005) and Albrecht’s (Albrecht, 2005) 

methodologies is one developed by Friend (Friend, 2007).  Friend developed metrics that 

are based on entropy and Kullback-Lieber distance as NDEC methods (Friend, 2007).   

Turnbaugh (Turnbaugh, 2009) extends on the works of Fumera et al. (Fumera et 

al., 2000) and Friend (Friend, 2007) for his method of NDEC.  For the current exemplar x 

a classification decision is not made if 

 

 max
𝑘∈1,2,…,𝑁

�̂�𝛼(𝑤𝑘|𝑥) =  �̂�𝛼(𝑤𝑖|𝑥) < 𝜃𝑖𝛼 (12) 

 

where �̂�𝛼(𝑤𝑘|𝑥) is the estimated similarity measure for class i given x at aspect angle α.   

However, as stated at the beginning of this section, NDECs occur when the object 

in question resembles more than one object in the library.  Therefore, Turnbaugh 

(Turnbaugh, 2009) used a threshold of the difference between the winning class 
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similarity measure and the class with the next best similarity measure.  The descriptive 

equation is 

 

 max
𝑘∈1,2,…,𝑁

�̂�𝛼(𝑤𝑖|𝑥) −  max
𝑘∈1,2,…,𝑁,𝑘≠𝑖

�̂�𝛼(𝑤𝑖|𝑥) < 𝜃𝑖𝛼 (13) 

 

where 𝜃𝑖𝛼 is a given percentage of the overall range of similarity scores for that 

exemplar.  A detailed example is provided below.   

Simply stated, a NDEC label will be given to an exemplar x if the difference 

between the winning class similarity measure and the similarity measure of the second 

best class is less than some percentage of the overall range of similarity measures.  For 

example, for the similarity metric vector 

S = (0.45, 0.40, 0.10, 0.01, 0.01, 0.01, 0.01, 0.01) 

the top two scores are 0.45 and 0.40 for class 1 and class 2, respectively.  For a 10% non-

declaration, 𝜃𝑖𝛼 = (0.45 – 0.01)*0.10 = 0.04.  With a top-two score difference of 0.05, we 

have 0.05 ≮ 0.04; therefore, a declaration can be made.  If a 20% non-declaration is used 

𝜃𝑖𝛼 = (0.45 – 0.01)*0.20 = 0.09.  Because this is larger than the top-two difference a 

NDEC would be given to this exemplar.   

Turnbaugh (Turnbaugh, 2009) then goes on to provide a couple areas where his 

NDEC methodology differs from the methodology of Friend (Friend, 2007).  First, the 

NDEC decision will be based on how the exemplar compares to each object in the library 

and not on how other exemplars have compared to the library objects.  Second, because 

posterior probabilities have been  negatively criticized in classification systems due to 

prior probability estimations, Turnbaugh’s method does not require posterior probability 

estimates.  Also, the posterior probability estimates are always normalized to sum to 1.  

According to Richard and Bray (Richards & Bray) and Ross and Minardi (Ross & 

Minardi, 2004) this is not always a good thing when a forced decision is made.    
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III.  Methodology 

 

This chapter will first discuss the performance measures used for assessments 

followed by a detail description how the proposed ATR process was developed.  The 

chapter will concluded with a summary of the specific ATR aspects and settings used for 

the final analysis discussed in Chapter IV.   

 

Performance Measures  

The first performance measure used to assess ATR performance is the True 

Positive Fraction (TPF). TPF is the proportion of correctly classified anomalies; this is 

calculated with the fraction number of correctly classified true anomalies (“TP count”) 

divided by “TP count” summed with the number of incorrectly classified true anomalies 

(“FN count”), Equation (14).  “TP” stands for “true-positive” and “FN” stands for “false 

negative.”  Ideally, the TPF value is equal to or as close to one as possible (Fawcett, 

2001)   

 

 𝑇𝑃𝐹 =  
𝑇𝑃 𝑐𝑜𝑢𝑛𝑡

𝑇𝑃 𝑐𝑜𝑢𝑛𝑡 + 𝐹𝑁 𝑐𝑜𝑢𝑛𝑡
 (14) 

 

The second measure is the False Positive Fraction (FPF); it is defined as the proportion of 

falsely classified anomalies.  This is calculated with the fraction number of incorrectly 

classified non-anomalies (“FP count”) divided by number of correctly classified non-

anomalies (“TN count”) summed with “FP count,” Equation (15).  “FP” stands for “false-

positive” and “TN” stands for “true negative.”  The FPF value is ideally equal to zero or 

as close to zero as possible (Fawcett, 2001) 
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 𝐹𝑃𝐹 =  
𝐹𝑃 𝑐𝑜𝑢𝑛𝑡

𝐹𝑃 𝑐𝑜𝑢𝑛𝑡 + 𝑇𝑁 𝑐𝑜𝑢𝑛𝑡
 (15) 

 

In order to compare the TPF rates and FPF rates together for each ATR 

procedure, a variation of a ROC curve is applied.  ROC curve analysis is widely used in 

summarizing imperfect diagnostic system performance, for example ATR and biomedical 

research (Alsing, Bauer, & Oxley, 2002).  A typical ROC curve summarizes the 

relationship between the TPF and FPF when a variable, or decision threshold, is varied.  

Figure 8 is a typical ROC curve, where “probability of detection” refers to TPF and 

“probability of false alarm” refers to FPF; “conservative” and “aggressive” refer to the 

level at which the decision threshold is varied (Alsing, Bauer, & Oxley, 2002).   

 

 
Figure 8.  Typical ROC Curve, taken directly from (Alsing, Bauer, & Oxley, 2002) 

 

For this study, instead of varying one decision threshold we will be varying two: 

OOL threshold and NDEC threshold.  Therefore, the curve that is depicted in Figure 8 

will not exist and in its place will be distinctive points based on the various OOL and 
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NDEC threshold level combinations, Figure 9.  The concepts of TPFs and FPFs will be 

extended to two different cases: Classification and Recognition.   

 

 
Figure 9.  Example ROC Curve Variation 

 

Classification 

Classification in this sense corresponds to how an anomaly is identified on a 

macro-level.  The key is that anomalies are either considered a target or background.  The 

anomaly is considered a target if it is identified as one of the targets within the truth 

library; otherwise, it will be identified as background.  Background is defined as anything 

not within the truth library.  A simple confusion matrix is given in Table 1.   

 

 

 

 

 

 



32 
 

Table 1.  Classification Confusion Matrix 

 
Anomaly Identified as… 

“Target” “Background” 

Tr
ue

 A
no

m
al

y 

is
…

 Target TP count FN count 

Background FP count TN count 

 

Recognition 

Recognition on the other hand corresponds to how an anomaly is identified on a 

micro-level.  For this study we are only considering those anomalies which have made it 

as a “TP count” from the above section.  The key here is that an anomaly is identified as a 

specific target within the truth library correctly or it is not.  In a sense we are dissecting 

the “TP count” section in Table 1.  The recognition confusion matrix is given in Table 2.   

 
Table 2.  Recognition Confusion Matrix 

 
Anomaly Identified as… 

“Target 1” “Target 2” “Target 3” “Background” 

Tr
ue

 A
no

m
al

y 

is
…

 

Target 1 TP1 count FP12 count FP13 count FN1 count  

Target 2 FP21 count TP2 count FP23 count FN2 count 

Target 3 FP31 count FP32 count TP3 count FN3 count 

Background FPB1 count FPB2 count FPB3 count TN count 
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Because there is more than one target the TPF and FPF calculations need to be 

considered for each different target.  For example, Target 1’s TPF and FPF respectively 

are, 

 

 𝑇𝑃𝐹1 =
𝑇𝑃1 𝑐𝑜𝑢𝑛𝑡

𝑇𝑃1 𝑐𝑜𝑢𝑛𝑡 + 𝐹𝑃12 𝑐𝑜𝑢𝑛𝑡 + 𝐹𝑃13 𝑐𝑜𝑢𝑛𝑡 
 (16) 

 

and 

 

 𝐹𝑃𝐹1 =
𝐹𝑃21 𝑐𝑜𝑢𝑛𝑡 + 𝐹𝑃31 𝑐𝑜𝑢𝑛𝑡

𝑇𝑃1 𝑐𝑜𝑢𝑛𝑡 + 𝐹𝑃21 𝑐𝑜𝑢𝑛𝑡 + 𝐹𝑃31 𝑐𝑜𝑢𝑛𝑡 
 (17) 

 

A similar approach is completed for Target 2 and 3’s TPFs and FPFs.  The counts for the 

background labels are given as added information but not used for the target TPF and 

FPF calculations.   

Label Accuracy 

The final performance measure is label accuracy.  This is described as the percent 

of anomalies identified as targets that were in fact targets.  From the classification 

confusion matrix the equation is (Fawcett, 2001),  

 

 𝐿𝐴 =
𝑇𝑃 𝑐𝑜𝑢𝑛𝑡

𝑇𝑃 𝑐𝑜𝑢𝑛𝑡 + 𝐹𝑃𝑐𝑜𝑢𝑛𝑡
 (18) 

 

Methodology and ATR Development Process  

The methodology can be separated into five different steps: 0) Import image data, 

1 a) Region of Interest Generator, 1 b) Atmospheric compensation, 2) Matched Filter, 3) 

OOL detector, and 4) NDEC decision, Figure 10.   
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Step 0:  Import hyperspectral image data 

Using the HYDICE data sets, sensor image data, frequency list, and data truth 

masks are imported.  The sensor image data consist of the data matrices, X, mentioned in 

Chapter II.   The frequency list contains those frequencies at which the sensor collected 

image data.  Finally, the data truth masks are matrices that indicate the “true” location of 

image anomalies.  The term “true” is used loosely as the data masks were created by hand 

and are subject to interpretation of the creator of the file.  

Atmospheric Absorption 

Also included at this step are handling atmospheric absorption bands.  These are 

frequency bands at which the energy emitted from the image is almost completely 

absorbed by the atmosphere.  Any detection in those bands will primarily be random 

noise (Smetek, 2007).  Because these bands provide little information they can be 

removed from the image data with minimal degradation to ATR performance.  For this 

study the absorption bands are, by observation: 1-9, 98-114, 133-157, and 201-210 

(Johnson, 2008).  As an example, Figure 11 displays a signature with 210 frequency 

bands.  When absorption bands are removed the signature becomes Figure 12.  This 

process removed data which would corrupt PCA with sensor noise and atmospherically 

absorbed bands. 
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Figure 11.  Example Signature Plot with 210 frequency bands 

 

 
Figure 12.  Example Signature Plot without absorption bands 

 

Step 1 a: Region of Interest Generator 

Once the image data is imported and absorption bands removed, the image data will then 

be run through a ROI generator.  The original ROI generator used was the RX anomaly detector.  

As we will see, RX appeared to be miss detect anomalous pixels when compared with the truth 
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masks; therefore, AutoGAD outputs were examined as well.  RX will be discussed first, 

followed by AutoGAD.    

An observational study was completed to determine the effect of the number of PCs 

retained for the RX detector.  RX output files were generated and then graphically depicted to 

assess the effects of including additional PCs.  The RX output is a two-dimensional data matrix 

containing RX scores for each image pixel.  The higher the RX score the more anomalous the 

pixel in an RX sense.  As indicated by the color scale on the right side of Figure 13, low scores 

are in the blue spectrum and high scores are in the red spectrum.  Figure 13 shows that as the 

number of PCs increase the RX scores actually decrease with regard to the anomalies.  

Therefore, we see the highest scores for the anomalies when the PCA dimension is only one 

(second image from the left of Figure 13).  A side effect of using less PCs is the background 

appears to clutter the RX results more.  With more PCs the background RX scores decrease, 

however a performance tradeoff exists with increasing computation time.  Two recent studies 

suggest that the best performance for the RX detector actually occurs around 10 PCs for RX on 

the HYDICE images (Williams, Bihl, & Bauer) (Taitano, Geier, & Bauer, 2010).   

  

 
Figure 13.  PCA dimensional comparison for RX detector.  “PCA dim” equals the number of PCs 
retained and “Window Size” equals the number of pixels for the length and width of the window. 

 

Another input to be defined for the RX detector is the size of the processing window used 

to characterize the background pixels.  As stated in Chapter II, a general-rule-of thumb in 
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selecting a window size is 10 times the number of pixels to number of bands (Borghys & 

Perneel, 2010), or the number of pixels must be at least the number of dimensions of the image 

(Smetek, 2007).  These “rules” were taken into account for the aforementioned observation study 

to study the effects of window size.   

The widow size is defined as the number of pixels for the length and width of the 

window, i.e., if the window size is 10 this implies the window is actually 10 pixels by 10 pixels.  

From Figure 14 we see a couple of areas being affected by window size.  First, when the window 

size is small the image produced by the RX detector scores appear cluttered, with no noticeable 

definition of anomalies, Figure 14 (a).  This occurs when the window is small and background 

estimates appear to closely resemble the center pixel of interest.  Second, as the window size 

increases in size the anomalies become readily apparent with large RX scores.  In fact, in Figure 

14 (b) there is no mistaking the anomalies.  With large windows more accurate background 

estimates can be calculated and a good RX score can be calculated for the center pixel.  

Unfortunately, there are more distinguishable “frames” appearing in the images.  This is directly 

due to the increase in window size because the pixels within the frame cannot be estimated 

because the window size is too large.  Based on the suggested “rules”, the observational study, 

and the study by Williams et al. (Williams, Bihl, & Bauer), a window size of 25 was utilized, 

giving a total of 626 pixels per window.   

 

 

(a) 
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(b) 
Figure 14.  Window Size comparison for RX detector.  “PCA dim” equals the number of PCs 

retained and “Window Size” equals the number of pixels for the length and width of the window.   

 

In an effort to correct the “framing” issue the Linear RX (LRX) detector was also initially 

assessed, LRX is a variation of RX (Williams, Bihl, & Bauer).  Instead of using a moving 

window to characterize background pixels, LRX uses a line of pixels above and below the pixel 

of interest.   If the pixel of interest is too close to the upper or lower border and a full line is not 

complete, the line will extend to the previous column or next column depending on the location 

of the pixel of interest.  A depiction of the LRX moving column is in Figure 15.   

 

 
Figure 15.  LRX Moving Column Example, taken directly from (Bush, 2012) 
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LRX images based on scores were observed at varying line sizes, Figure 16.  Again, 

anomalies with high scores are more likely anomalies.  A few things become evident by 

assessing the images.  First, the RX issue of “framing” has now been eliminated.  Second, there 

appears to be a greater amount of clutter present.  Finally, as the line size increases the anomalies 

become more noticeable with increased scores, see top anomaly.  One noticeable limitation is 

that if anomalies are vertically aligned, as is the case in Figure 16, when the line overlaps a 

number of anomalies the LRX score tends to be lower.  Similarly, areas along the road on the left 

of the image where there is tree overhang are highlighted as possible anomalies.  Because of the 

increased clutter in the images it was decided to continue with the regular RX detector as the 

ROI generator.   

 

 
Figure 16.  LRX score comparisons based on varying Line Size.  Number of PCs equals one. 

 

With the ROI decided upon, the RX detector function is executed and each RX score is 

compared to a given threshold based on the Chi-squared distribution.  Distribution inputs include 

an alpha value, or the probability that a score is greater than the threshold, and v degrees of 

freedom, or the dimensionality of the data.  Because PCA was completed on the image data the 

degrees of freedom are the number of PCs retained, which is 10 for this study.  If an RX score is 

greater than the threshold a one is recorder in the corresponding cell in a new matrix of binary 
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indicator variables representing an anomaly; otherwise, the corresponding cell is set equal to zero 

representing background.   

In the observation study several alpha values were assessed.  From Figure 17 it is obvious 

that as the alpha value decreases the number of potential anomalies (labeled “Number of 

Categories” on the image) also decrease.  This is because as the Chi-squared value increases due 

to smaller alpha values, less noise will be detected as an anomaly.  The number of categories is 

defined using the “regionprops” command in MATLAB where each spatially separated pixel is a 

different category.  If a pixel is touching another pixel to the left, right, top, bottom, or 

diagonally they are grouped into the same category.  A downside of a small alpha can be the 

computation time but we found that to be negligible and thus an alpha of 0.01 was decided upon.  

It should be noted that Figure 17 actually used one PC.   

 

 

 
Figure 17.  Alpha Value Comparison for RX Detector 
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Following the grouping of anomalies a simple heuristic, called “Chucking,” was used to 

decrease the number of potential anomalies to be assessed in the remainder of the ATR process.  

Chucking is simply removing potential anomalies based on the number of pixels that make up 

the anomaly group.  It was assumed that anomaly groups containing three or less pixels were 

erroneous, and therefore removed.  By applying the chucking heuristic the number of categories 

decreased to a more manageable level when compared to levels without chucking applied.  

Figure 18 shows the results of chucking when applied to the images in Figure 17.  The result of 

the chucking heuristic is summarized in Table 3.  

 

 

 
Figure 18.  Chucking Hueristic results when applied to RX detector 
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Table 3.  Number of Categories (anomaly groups) with or without Chucking per RX alpha level. 

RX alpha level Without Chucking With Chucking 
0.20 74 23 
0.10 37 16 
0.05 24 9 
0.01 9 4 

 

Due to the known limitations of the RX anomaly detector (specifically the “border” 

issue) and the matched filter performance results observed in Step 2 below, the global anomaly 

detector AutoGAD was also considered.  Unlike RX, AutoGAD outputs if a pixel was an 

anomaly or just background, Figure 19.  Also, while there are thresholds inherent to AutoGAD 

the settings from Johnson (Johnson, 2008) were used for this study.  The main reason behind the 

investigation between ATRs with RX and AutoGAD came to fruition because it was noticed 

during initial ATR assessments that ROC curves for the RX ATR appeared to outperform the 

AutoGAD ATR, Figure 20.  This is of interest because AutoGAD was shown to be an improved 

anomaly detector and it was unexpected that an ATR with RX would perform better (Johnson, 

2008).  It should be noted that the vegetation index threshold in Figure 20 will be addressed in 

the next section.   

 

 
Figure 19.  Example AutoGAD Output 
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Figure 20.  ROC comparison of RX (alpha = 0.01 and 1 PC) and AutoGAD per different Vegetation 

Index Threshold (V1 – V5) 

 

Step 1 b: Atmospheric Compensation  

To deal with the unknown illumination and atmospheric conditions present in all HSI 

images and to convert reflectance data to radiance data the linear approximate, Equation (1) was 

applied.  NDVI was used to locate healthy vegetation; other estimates were used to calculate the 

“known” reference signatures required for the gain and offset parts of the approximate.  Recall 

that ELM was not used exclusively because locating the known reflectance signatures could not 

be automated and did not meet a study objective of a fully automated process.   

Normalized-Difference Vegetation Index 

The NDVI equation, Equation (4), requires the Lp(860 nm) and Lp(660 nm) values for 

each pixel.  Because spectral sampling is not exactly at whole numbers of wavelengths, the 

nearest values can be obtained by first subtracting the desired wavelength from each of the 

frequencies listed in the HYDICE frequency list.  Next, the absolute values of the differences are 

taken.  Finally, the minimum value is extracted giving the location of either band, indicating the 

closest value to the desired wavelength.  The result gives the location of the red and NIR bands 



45 
 

with respect to the image being processed.  Next, the NDVI is calculated for each image pixel.  

Figure 5 (b) is an example display of the NDVI values.   

Because only high values are considered healthy vegetation, each value is compared to a 

given threshold.  This threshold is subject to the results of the NDVI values for each image.  

Consequently, a quick study was completed to see if there was an optimal vegetation index 

threshold based on a percentage of images pixels assumed to be healthy vegetation.  The study 

looked at five different percentages of image pixels: 0.5, 1.0, 5.0, 10.0, and 20.0.   These 

percentages will be referred to as vegetation indices.  For each percentage the number of pixels 

to retain was calculated.  The NDVI value for each pixel is reshaped into a vector and is sorted 

from largest to smallest.  The top numbers of retained pixels are kept and the minimum NDVI 

value is recorded.  This minimum NDVI value serves as the vegetation index threshold.  For 

example, Table 4 lists NDVI values from largest to smallest.  The NDVI value 0.192 is the 

minimum value of the top 5% of image pixels per NDVI score.  Therefore, 0.192 is the 

vegetation index threshold for this example.   

 
Table 4.  Example Vegetation Index Threshold 

NDVI 
Values 0.201 0.197 … 0.195 0.192 0.188 … -0.155 -0.162 

 

 

 

 

Assessment of the vegetation index levels was completed with a review of ROC curves 

based on TPF and FPF scores.  Images ARES1D, ARES1F, ARES3D, ARES3F, ARES5, and 

ARES6D_10kFT were processed through the ATR for this quick study.  The remaining images 

were not processed because they did not contain objects in the truth library.  TPF and FPF results 

were calculated for each combination of vegetation index, 15 OOL thresholds, and 15 NDEC 

thresholds and were plotted to create ROC curves.  All six ROC curves are given in Appendix A, 

Top 5% NDVI 
values 
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but for convenience an example is provided in Figure 21.  Details on the OOL and NDEC 

thresholds will be discussed later.   

To assess all six images rankings of 1 to 5 were given for each image ROC curve (shown 

in Figure 21) and summarized in a table similar to Table 5.  All tables can be found in Appendix 

B.  The rankings are based on ideal TPF, FPF combinations mentioned earlier.  For example, in 

Figure 21 the vegetation index of 5% would be considered the best and ranked one.  

Unfortunately, this one location does not include all the OOL, NDEC threshold combinations for 

vegetation index 5% as scores are also located at rankings 2 and 5 and other unranked locations.     

 

 
Figure 21.  ROC curve for Vegetation Index comparison with RX detector (1 PC) and image 

AERES1D 

 
Table 5.  Vegetation Index ranking assessment for image ARES1D 

Image Ranking 
Vegetation Index (%) 

0.5 1.0 5.0 10.0 20.0 

ARES1D 

1   1   
2    2 2 
3  3    
4 4     
5 5 5 5 5  

sum 9 8 6 7 2 
average 4.5 4 3 3.5 2 
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Originally just the number one rankings were assessed with no clear vegetation index as 

the one to use.  It was then thought that a vegetation index may never get ranked number one but 

still be the overall best because it scored relatively high on all images.  Thus the sum and average 

of the rankings were taken, Table 5.  Unfortunately, it too was inconclusive when looking at just 

the sums, averages, or a combination of sums and averages.  It was also thought that different 

image types (Forest and Desert) might require different vegetation indices.  After review, this too 

was inconclusive.  With the study being inconclusive and due to time limitations a vegetation of 

5% was decided upon.   

The next step in the NDVI process is to locate those pixels where the NDVI values are 

greater than the vegetation index threshold.  Those pixel’s frequencies are then averaged across 

the frequency bands, resulting in a mean vector that represents the radiance measurement for 

vegetation.  This serves as the first reference signature, L1, used for the gain and offset 

calculation in Equations (2) and (3), respectively.  The second reference signature, L2, is referred 

to as a shade spectrum and is determined by using the minimum radiance value of the image in 

each frequency band.  Figure 22 depicts an example NDVI mean and shade spectrum signatures.   

 

 
Figure 22.  Example NDVI Mean and Shade Spectrum Signatures 
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Gain and Offset 

Recall that L1 and L2 from Equations (2) and (3) refer to the known reference signatures 

(in radiance) provided by NDVI and ρ1 and ρ2 are known reflectance signatures.  To obtain one 

of the reflectance signatures an assumption is made that a specific vegetation type available in a 

truth library is present in the image.  In theory this could be any vegetation because of the prior 

assumption that vegetation reflectance signatures have a distinct shape and most images will 

contain a fair amount of vegetation (Eismann, 2011).  For this study the reflectance signature of 

the sweet gum tree was selected to serve as ρ2.  Note the absorption bands are removed from the 

reflectance signature.  The other reflectance signature, ρ1, is simply a zero vector the same 

dimensions as the sweet gum tree with absorption accounted.  With gain and offset equations 

established, estimates can be calculated and the linear approximate can be completed.   

Linear Approximate 

The goal of the linear approximate, Equation (1), is to convert a known reflectance 

signature(s) to an image based, atmospherically compensated radiance signature(s).  The 

reflectance signature(s) is the signature(s) that is available in the truth library.  For this study we 

are focused only on man-made objects to include M1 tanks, T-72 Soviet tanks, and HMMWVs 

with woodland camouflage.  Now that an atmospherically compensated radiance signature exists 

for each item in the truth library each anomaly (pixel or group) can be statistically compared to 

the radiance signatures for classification.   

 

Step 2:  Matched Filter and Forced Identification 

The classification method applied here was the adaptive matched filter (AMF).  However, 

before the AMF was applied the basic form of the matched filter (MF), Equation (7), was 

assessed.  It should be pointed out that the ROI generator for the following assessments was the 

RX anomaly detector.  The MF requires four inputs: a known reference signature (or truth 

signature), a mean vector estimate of the image background, a covariance estimate of the image 
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background, and the signature of the anomaly pixel of interest.  Each input will be briefly 

described next.    

The known reference signature is the atmospherically compensated radiance signature 

calculated in Step 1.  The mean vector estimate of the image background is the average sensor 

value for each image pixel across the different frequency bands.  The covariance estimate of the 

image background is the covariance of all image pixels at all frequencies.  Note: the MATLAB 

covariance function removes the mean from each column (frequency band) before calculating the 

covariance.  Finally, the anomaly pixel of interest’s signature is the signature that will be tested 

for classification.   

The first pixel of interest signature that was assessed was the average anomaly signature.  

Recall, after chucking was completed in Step 1a groups of anomalies were given.  These groups 

consist of four or more image pixels.  The average anomaly signature used for the MF is the 

average sensor reading across the frequency bands.  Figure 23 is an example of an anomaly 

group with individual pixel signatures and the average signature plotted.   

 

 
Figure 23.  Example Average Signature and Individual Pixels Signature Plot 
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It was noticed that the MF scores of the anomaly average signatures were not as 

expected.  Anomalies that were within the target library did not score as high as expected, while 

anomalies outside the target library were scoring rather high.  An issue identified when 

comparing the anomaly group pixel list to the true anomaly pixel list was the two pixel lists were 

not corresponding very well.  In fact, it appeared as if the anomalies detected by the RX detector 

were focused on the shadows.  Therefore, a second signature from a pixel of interest was 

assessed.   

The next signature from a pixel of interest was the centroid of the anomaly group.  In 

practice this was a bad idea.  If the anomaly group was of an even number of pixels or of an odd 

shape the given centroid was rounded.  For example, the centroid of the above example was 

calculated as [63.889, 102.111] and rounded to the nearest whole number, [64, 102].  This cell 

location was then used as the pixel of interest.  This did not perform very well and it was decided 

that the rounded pixel location could essentially round to a pixel outside of the anomaly group if 

the anomaly group was not symmetric.  Other methods briefly observed were the median 

signature and the mode signature of the anomaly groups with no advantages noted.   

Since MF scores of the known (true) anomalies in the truth library were on the extremely 

low side it was decided to try the AMF, Equation (8).  Additionally, a new technique to 

determine the signature of an anomaly group was looked at instead of the group average anomaly 

signature, centroid signature, and other signatures.  This technique involved calculating the AMF 

score of each pixel in the anomaly group for all truth signatures in the library.  Then a 

classification label would be assigned (forced) based on the overall maximum AMF score.  The 

maximum AMF score would then be applied to Steps 3 and 4.   

To reach the overall maximum AMF score a data fusion technique was applied.  Data 

fusion was accomplished by counting the number of anomaly pixels that were assigned (forced) 

to the different library targets.  This is easier explained through an example.  Table 6 displays the 

AMF scores for each pixel in anomaly group #3 versus the different library targets; the 

maximum AMF score is highlighted per pixel.  Each maximum AMF score is then counted for 
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each library target type and plotted in a histogram, Figure 24.  The maximum AMF score came 

from the library target with the highest count.  For this example library target five contained the 

highest count and its maximum AMF score is 6.635.   

 
Table 6.  Example AMF Scores with maximum score per pixel highlighted 

AMF 

Scores 

Anomaly Group #3  

Pixel Number 

Library 

Target 
1 2 3 4 5 6 7 8 9 

1 0.339 0.355 1.534 0.545 0.508 3.989 0.207 0.099 5.29 

2 0.323 0.318 1.218 0.584 0.673 5.299 0.166 0.235 6.76 

3 0.337 0.374 1.783 0.483 0.350 2.740 0.238 0.021 3.820 

4 0.123 0.693 1.561 0.090 0.099 1.752 0.003 0.138 4.272 

5 0.004 0.418 6.635 0.652 1.222 0.608 1.509 1.237 0.626 

 

 
Figure 24.  Example Histogram of Maximum AMF Score Count for RX detector 
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After examination of this “maximum” technique it was noticed that there could exist the 

possibility for extreme values, or outliers, to skew results.  To account for this variability a new 

“maximum average” technique was applied.  To accomplish this, the average AMF score of each 

library target type was calculated.  The assignment (forced ID) of the anomaly group would 

correspond to the location of the maximum average.  Referring to the above example the average 

of each pixel per library object are given in Table 7 with the maximum average highlighted.  

Therefore, the forced ID for this anomaly group would be library target type two and the average 

AMF score, 1.731, which would be passed to Steps 3 and 4 for further assessment.   

 
Table 7.  Example Average AMF Scores for Anomaly Group #3 with RX detector and maximum 

score highlighted 

Library Target Average AMF Scores 
1 1.430 
2 1.731 
3 1.127 
4 0.970 
5 1.435 

ROI: RX with 1 PC and 25x25 Window 
Vegetation Threshold Index: -0.34 

 

From Table 7 it is obvious that the “maximum average” AMF scores are still rather low.  

This was the case for other true anomalies as well.  Therefore, it was at this point that AutoGAD 

was introduced as a ROI generator.  The belief was it would detect fewer pixels in the shadow 

regions and more of the center anomaly pixels.  Continuing the same example, the results shown 

in Figure 25 and Table 8 were promising.  The cell count of maximum MF scores per pixel fell 

in signal number two, Figure 25, which is a target within the target library.  The maximum 

averages have also increased, Table 8.  For these reasons AutoGAD was decided upon as an 

additional ROI generator to assess and the “maximum average” technique would be applied.  
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Note, Figure 25 indicates anomaly group five and Figure 25 indicates anomaly group three; these 

refer to the same truth anomaly.   

 

 
Figure 25.  Example Histogram of Maximum AMF Score Count for AutoGAD detector 

 
Table 8.  Example Average AMF Scores for Anomaly Group #3 with AutoGAD detector and 

maximum score highlighted 

Library Target Average AMF Scores 
1 4.275 
2 4.784 
3 3.649 
4 4.308 
5 1.752 

ROI: AutoGAD 
Vegetation Threshold Index: -0.34 

 

Step 3: Out-of-Library Detector 

With the AMF score decided upon via the “maximum average” technique it will now be 

compared to thresholds to determine whether the anomaly is labeled as OOL or IL.  Because 

AMF scores are dependent on the image the thresholds could not be hardcoded.  To account for 
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this the maximum AMF was recorded and divided by the number of desired threshold levels.  In 

this case we used a nominal 15 levels.  The quotient serves as the minimum threshold value as 

well as the increment value between threshold levels.  The AMF is then compared to each of the 

thresholds.  If the AMF score is less than the threshold an OOL will be assigned, indicating the 

anomaly does not resemble at least one of the objects within the target library.  At this point the 

object would not proceed to the NDEC decision.  On the other hand, if the AMF score is greater 

than or equals the threshold an IL label will be assigned, indicating the anomaly resembles an 

object within the target library.  Because the anomaly is labeled with an IL the NDEC decision 

step can be accomplished.   

As an example, Table 9 shows the maximum average AMF scores for four anomaly 

groups, where the third column value (highlighted in green) was the value determined from the 

previous example.  Because 4.784 is the maximum of the maximum average AMF scores, the 

thresholds are determined by dividing it by the number of desired thresholds.  For this example 

we divide 4.784 by five.  Therefore, the minimum threshold is 4.784 5⁄ = 0.957.  This value is 

also the range between thresholds.  Comparing AMF scores to the different threshold levels we 

are able to determine IL and OOL labels.   

 
Table 9.  Example of 5-Level OOL Threshold Comparison 

Threshold 
Maximum Average AMF Scores per Anomaly Group 

3.405 4.784 1.945 2.124 

0.957 IL IL IL IL 

1.914 IL IL IL IL 

2.870 IL IL OOL OOL 

3.827 OOL IL OOL OOL 

4.784 OOL IL OOL OOL 
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Step 4: Non-Declaration Decision 

Assuming the anomaly is labeled as IL in Step 3 the NDEC decision is next.  Prior to 

applying a similar threshold technique as in Step 3, the difference of the two highest AMF scores 

per anomaly group is calculated.  These differences are then compared to the different threshold 

levels.  If the difference is less than the threshold a NDEC label is assigned to the anomaly 

indicating the anomaly too closely resembles the two different target classes.  If the difference is 

greater than or equals the threshold, the anomaly can be declared as the forced ID in Step 2.   

Continuing with the average AMF scores from Table 8, the top two scores are 4.784 and 

4.308 with a difference of 0.476.  As a five level threshold example of the NDEC procedure, in 

Table 10 there are four anomaly groups with their respective AMF score differences.  Column 

three (highlighted in green) is the maximum difference, thus the NDEC threshold levels are 

based on dividing 0.476 by five.  When the difference is greater than or equal to the threshold a 

DEC label can be given; otherwise, a NDEC label is given.   

 
Table 10.  Example of 5-Level NDEC Threshold Comparison 

Threshold Difference per Anomaly Group 
0.302 0.476 0.180 0.257 

0.095 DEC DEC DEC DEC 
0.190 DEC DEC NDEC DEC  
0.286 DEC DEC NDEC NDEC 
0.381 NDEC DEC NDEC NDEC 
0.476 NDEC  DEC NDEC NDEC 
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Summary  

To summarize, the following two ATRs used for assessment and their required settings 

are given in Table 11.   

 
Table 11.  Summary of ATRs and required settings 

 ATR 1 ATR 2 

ROI Generator 

- Number of PC’s 

- Alpha Level 

- Window Size 

RX 

- 10 

- 0.01 

- 25 

AutoGAD 

- n/a 

- n/a 

- n/a 

Atmospheric Compensation Technique VN VN 

Vegetation Index Percentage 5.0% 5.0% 

Matched Filter AMF AMF 

AMF Score Technique Max. Avg. Max. Avg. 

Number of OOL Thresholds 15 15 

Number of NDEC Thresholds 15 15 
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IV.  Results and Analysis 

 

This chapter begins with an explanation of the truth target library, data sets for training 

and testing, and replication of data.  An assessment is then provided for the training images with 

a final recommendation of OOL threshold and NDEC threshold.  Finally, the recommended 

thresholds are applied to the test data set and the results are assessed.   

 

Truth Target Library 

The truth library consists of five different reflectance signatures.  Each target’s signature 

is the mean of a number of different individual signature measurements, last column of Table 12.   

 
Table 12.  Truth Target Library Data 

Target Name Target Type Number of Reflectance Signatures 

M1 M1 US woodland tank 8 

M1 M1 US woodland tank 5 

M1 M1 US woodland tank 13 

HMMWV HMMWV US utility vehicle, woodland 5 

T-72 T-72 Soviet tank, woodland 8 

 

Training and Testing Data Sets 

The images are divided into three groups:  

• Group 1: training with library objects,  

• Group 2: testing with library objects, and  

• Group 3: testing without library objects.   

Group 1 images are used to establish the recommended settings for the OOL threshold and 

NDEC threshold per RX, AutoGAD, and overall.  Group 2 images are used to assess the ATR 

performance.  Finally, Group 3 images are used to assess the false-positive rates for images that 



58 
 

do not contain library objects.  The images for Groups 1 and 2 were selected at random.  The 

image lists per group and image properties are summarized in Table 13.   

 
Table 13.  Training and Test Image Groups and Properties 

 
Image – 

ARES 

Properties 

Pixel 

Dimensions 

Number of Targets Total 

Targets 

Scene 

Type M1 HMMWV T-72 others 

G
ro

up
 1

 

1F 191x160 -- 2 4 3 9 F 

3F 226x136 4 3 1 12 20 F 

4 460x78 -- -- 3 15 18 D 

5 355x150 4 3 1 7 15 F 

6D_10kFT 215x77 -- -- 6 7 13 D 

G
ro

up
 2

 

1D 291x199 -- -- 6 -- 6 D 

3D 156x156 -- 3 -- 1 4 D 

5F 470x155 2 -- -- 38 40 F 

7F_10kFT 161x88 -- 3 4 4 11 F 

G
ro

up
 3

 2D 215x104 -- -- -- 46 46 D 

2F 312x152 -- -- -- 30 30 F 

4F 205x80 -- -- -- 28 28 F 

Legend: D – Desert and F – Forest 

 

Replications 

Due to the deterministic nature of the ATR with the RX detector only one run for each 

image is required.  Conversely, the ATR with the AutoGAD detector has a stochastic element 

caused by the “fastICA” algorithm inherent in the function (Johnson, 2008) (Hyvärinen, 1999).  

However, operationally if an ATR with an AutoGAD ROI generator was employed the 
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variability would be taken into account and based on experience the variation is considered 

negligible (Johnson, 2008).  Therefore, ATR assessments with AutoGAD will only include one 

replication.   

 

Training (Group 1) Data Set Analysis 

The purpose of the training data analysis is to decide on the OOL and NDEC thresholds.  

Training data runs for the RX and AutoGAD ATRs were completed in the following order, Table 

14.   

 
Table 14.  Group 1 Data Set Run Order 

Run 

Number 

ROI 

Generator 
Image 

Run 

Number 

ROI 

Generator 
Image 

1 RX ARES3F 6 AutoGAD ARES3F 

2 RX ARES6D_10kFT 7 AutoGAD ARES1F 

3 RX ARES5 8 AutoGAD ARES6D_10kFT 

4 AutoGAD ARES5 9 RX ARES4 

5 RX ARES1F 10 AutoGAD ARES4 

 

 ATR with RX Anomaly Detector 

TPF and FPF results for each combination of OOL threshold and NDEC threshold for the 

four-step ATR with the RX detector are provided in Figure 26.  The optimal FPF is 0.000 and 

TPF is 0.750.  These results occur at OOL threshold levels 7 - 10 and NDEC threshold level one.  

Coincidently, the OOL thresholds were the same for the three-step ATR.  Obviously, there are no 

thresholds for the two-step ATR.  A summary of the results are given in Table 15.    
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Figure 26.  4-Step ATR with RX detector TPF, FPF results for all OOL threshold and NDEC 

threshold combinations  

 
Table 15.  Recommended OOL and NDEC Threshold Levels for ATR with RX 

ATR with RX OOL Threshold Level NDEC Threshold Level 

4-Step 7, 8, 9, or 10 1 

3-Step 7, 8, 9, or 10 n/a 

2-Step n/a n/a 

 

ATR with AutoGAD Anomaly Detector 

TPF and FPF results for each combination of OOL threshold and NDEC threshold for the 

four-step ATR with the AutoGAD detector are provided in Figure 27.  The ideal FPF is 0.167 

and TPF is 0.167.  This occurs at OOL threshold levels 3 - 5 and NDEC threshold level one.  The 

OOL threshold was one for the three-step ATR.  Obviously, there are no thresholds for the two-

step ATR.  A summary of the results are given in Table 16.    
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Figure 27.  4-Step ATR with AutoGAD detector TPF, FPF results for all OOL threshold and NDEC 

threshold combinations 

 
Table 16.  Recommended OOL and NDEC Threshold Levels for ATR with AutoGAD 

ATR with AutoGAD OOL Threshold Level NDEC Threshold Level 

4-Step 3, 4, or 5 1 

3-Step 1 n/a 

2-Step n/a  n/a 

 

Training Data Set Summary and Recommendations 

Combining the results of the RX and AutoGAD four-step ATRs, Figure 28, it is obvious 

that the ATR with RX dominates the AutoGAD ATR.  Therefore, the OOL threshold level that 

will be applied to the four-step ATR will nominally be eight and the NDEC threshold to be 

applied will be at level one.  This domination by the RX ATR also occurred in the three-step 
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ATR, Figure 29.  The three-step ATR will have an OOL threshold of eight, although any level 

seven through ten could have be chosen.  The results are non-applicable for the two-step ATR. 

The domination of RX results to AutoGAD results was an unexpected result.  Examining 

the results indicate that although AutoGAD is a superior anomaly detector it is actually 

degrading the performance in the ATR process.  This could be because AutoGAD is detecting 

more anomalies than RX; hence, it actually creates more opportunities to inaccurately label a 

detected anomaly.   

 

 
Figure 28.  4-Step RX ATR vs. AutoGAD ATR comparison of TPF, FPF results for all OOL threshold 

and NDEC threshold combinations  
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Figure 29.  3-Step RX ATR vs. AutoGAD ATR comparison of TPF, FPF results for all OOL threshold 

and NDEC threshold combinations  

 

In regards to the two-step ATR with either ROI generator it was noticed the majority of 

TPF, FPF couples were (1,1).  This is due to the fact that every anomaly was declared as one of 

the truth library objects at the end of the matched filter step and background labels were not 

given to anomalies until the OOL and/or NDEC decision steps.  Therefore, a typical 

classification confusion matrix would resemble Table 17.   

 
Table 17.  Example Classification Confusion Matrix for 2-Step ATR 

 
Anomaly Identified as… 

“Target” “Background” 

Tr
ue

 A
no

m
al

y 

is
…

 Target 8 0 

Background 52 0 
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Test (Groups 2 and 3) Data Set Analysis 

As a result of the previously mentioned domination by the RX ATR over the AutoGAD 

ATR, test data runs will only be for the RX ATR.  They were completed in the following order, 

Table 18:   

 
Table 18.  Test Data Sets Run Order 

Run 

Number 
Image 

Data 

Group 

Number 

Run 

Number 
Image 

Data 

Group 

Number 

1 ARES4F 3 5 ARES2D 3 

2 ARES2F 3 6 ARES3D 2 

3 ARES7F_10kFT 2 7 ARES1D 2 

4 ARES5F 2  

 

Of the three performance measures for the seven images the most insight is gained with 

the classification FPF, columns 9 – 11 of Table 19.  Recall for the two-step ATR the FPF was 

always 1.  Comparing the three-step ATR to the full, we see that the FPF of the latter is always 

equal to or less than the prior.  This is expected as detected anomalies can only be updated with 

background labels going from the three-step ATR to the other.  For label accuracy and 

classification TPF it is difficult to note any trends.  Where applicable the label accuracy increases 

from the two-step ATR to the three-step ATR but it decreases comparing three-step to the four-

step ATR.  A label accuracy of zero indicates no TP results occurred.  The TPF performance 

measure also appears to decrease from three-step to four-step ATR.  Zeros occur because of the 

detected anomalies only background labels are given, or FP labels.  Not-a-number (NaN) results 

are given when no TP and FP results are available.  Looking at Group 3 results they appear as 

expected with NaN labels for the TPF and low FPF scores. 
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Table 19.  Testing Data Set Analysis Results plus four Training Data Set Images 

Group Image 
Label Accuracy 

Classification 
TPF FPF 

4-Step 3-Step 2-Step 4-Step 3-Step 2-Step 4-Step 3-Step 2-Step 

2 1D 0 0 0.070 0 0 1 0.042 0.042 1 
2 3D 0.333 0.600 0.047 0.333 1 1 0.039 0.039 1 
2 5F NaN 0 0.017 0 0 1 0 0.017 1 
2 7F 1 1 0.259 0.571 0.571 1 0 0 1 
3 2D 0 0 0 NaN NaN NaN 0.057 0.057 1 
3 2F 0 0 0 NaN NaN NaN 0.085 0.127 1 
3 4F 0 0 0 NaN NaN NaN 0.057 0.057 1 

 

Remember that the OOL threshold for the four-step ATR was chosen nominally to be 

eight when levels of seven, nine, and ten were also applicable.  In an effort to assess if 

performance measures were affected by valid OOL threshold levels, level seven was also 

assessed.  It was expected that by decreasing the threshold level label accuracy and TPF results 

in turn might increase.  This assessment showed the opposite with an increase in FPF scores for 

three of the seven images, Table 20.  These changes only occurred by adding one or two true 

background anomalies and labeling them as targets.  Label accuracy and TPF measures did not 

change for all images.  Levels nine and ten were not assessed because performance measures can 

only decrease.  All classification confusion matrices and performance measures are located in 

Appendix C.   
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Table 20.  OOL Threshold FPF Comparison 

OOL 
Threshold Group Image 

FPF 

4-Step 3-Step 2-Step 

7 2 1D 0.0588 0.0588 1 
8 2 1D 0.0420 0.0420 1 
7 3 2F 0.0986 0.1408 1 
8 3 2F 0.0845 0.1268 1 
7 2 5F 0.0169 0.0339 1 
8 2 5F 0 0.0169 1 

 

Recognition Evaluation 

Overall, the performance in regards to recognition was low or non-existent.  Across 

Group 2 images only one image, ARES7F_10kFT, recorded any TP counts for library targets for 

the four-step ATR process, Table 21.  In Table 22, image ARES3D, there are FP counts for one 

target type in all three ATRs and for images ARES1D and ARES5F there were only FP or TP 

counts in the two-step ATR, Table 23 and Table 24 respectively.   

 
Table 21.  Image ARES7F_10kFT Recognition Confusion Matrix 

 

 
Table 22.  Image ARES3D Recognition Confusion Matrix 

 

 

 

4-Step ATR 3-Step ATR 2-Step ATR

"M1" "HMMWV” "T-72" "B" "M1" "HMMWV" "T-72" "B" "M1" "HMMWV" "T-72" "B"
M1 0 0 0 0 M1 0 0 0 0 M1 0 0 0 0

HMMWV 0 2 0 1 HMMWV 0 2 0 1 HMMWV 1 2 0 0
T-72 2 0 0 2 T-72 2 0 0 2 T-72 3 1 0 0

B 0 0 0 20 B 0 0 0 20 B 11 2 7 0

4-Step ATR 3-Step ATR 2-Step ATR

"M1" "HMMWV" "T-72" "B" "M1" "HMMWV" "T-72" "B" "M1" "HMMWV" "T-72" "B"
M1 0 0 0 0 M1 0 0 0 0 M1 0 0 0 0

HMMWV 1 0 0 2 HMMWV 3 0 0 0 HMMWV 3 0 0 0
T-72 0 0 0 0 T-72 0 0 0 0 T-72 0 0 0 0

B 0 0 2 59 B 0 0 2 59 B 19 8 34 0
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Table 23.  Image ARES1D Recognition Confusion Matrix 

 

 
Table 24.  Image ARES5F Recognition Confusion Matrix 

 

 

 
  

4-Step ATR 3-Step ATR 2-Step ATR

"M1" "HMMWV" "T-72" "B" "M1" "HMMWV" "T-72" "B" "M1" "HMMWV" "T-72" "B"
M1 0 0 0 0 M1 0 0 0 0 M1 0 0 0 0

HMMWV 0 0 0 0 HMMWV 0 0 0 0 HMMWV 0 0 0 0
T-72 0 0 0 9 T-72 0 0 0 9 T-72 3 0 6 0

B 1 0 4 114 B 1 0 4 114 B 35 24 60 0

4-Step ATR 3-Step ATR 2-Step ATR

"M1" "HMMWV" "T-72" "B" "M1" "HMMWV" "T-72" "B" "M1" "HMMWV" "T-72" "B"
M1 0 0 0 2 M1 0 0 0 2 M1 2 0 0 0

HMMWV 0 0 0 0 HMMWV 0 0 0 0 HMMWV 0 0 0 0
T-72 0 0 0 0 T-72 0 0 0 0 T-72 0 0 0 0

B 0 0 0 118 B 2 0 0 116 B 56 13 49 0
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V. Discussion 

 

Conclusions 

The primary objective of this thesis was to develop a baseline, autonomous four-step 

ATR process for HSI.  This was completed with the following steps:  1) ROI generator, 2) 

classification, 3) OOL decision, and 4) NDEC decision.  During this study it was found that ATR 

performance was affected by the ROI generator.  Specifically, when comparing TPF and FPF 

scores the ATR with the RX anomaly detector dominated the ATR using the AutoGAD anomaly 

detector.   

Another objective, assessing the baseline four-step ATR process, demonstrated two points: 

1) From a classification perspective, meaning the anomaly falls within the target library or it 

doesn’t, the ATR process is feasible.  From an operational perspective this could be 

useful added information if a decision maker were interested in locating a subset of 

targets.  

2) From the recognition standpoint or the anomaly is correctly identified as a specific library 

target, the performance is low.   

Finally, inclusion of the OOL and NDEC steps assisted in filtering detected anomalies from 

targets of interest to background anomalies or anomalies that are outside the scope of the target 

library.   

 

Research Contributions 

This thesis developed a baseline, autonomous four-step ATR process for HSI, while 

demonstrating that an ATR with a less adequate ROI generator was superior to an ATR with a 

more robust ROI generator in regards to TPF and FPF performance.  Additionally, this research 

assessed how the incremental inclusion of the OOL step and NDEC step affect the performance 

of the ATR.   
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Further Research 

 Throughout this study new opportunities of investigation presented themselves as areas 

of future research.  These opportunities include:  

• Assess the vegetation index percentages to see if there is an ideal value for all images or 

perhaps image type as discussed in Chapter III.   

• Utilize Robust Parameter Design techniques to determine optimal ATR settings.   For 

example, using different techniques at each step.   

• Further assess why a less adequate anomaly detector performs better as compared to the 

AutoGAD detector with regards to ATR performance.      

• Look at the use of linear least-squares regression analysis for gain and offset estimates so 

that more than one known vegetation signature could be used for VN.  Or study ATR 

performance with different vegetation signatures.   

• Research using other image background means and covariance estimates for the 

classification step.   
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Appendix A: Vegetation Index Threshold Study: ROC Curves 
 

ARES1D: 
 

 
 

ARES1F: 
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ARES3D:  
 

 
 

ARES3F: 
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ARES5:  
 

 
 

ARES6D_10kFT:  
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Appendix B: Vegetation Index Threshold Study: Ranking Comparison 

 

ARES1D:   
 

Ranking 
Vegetation Index Percentage (%) 

0.5 1.0 5.0 10.0 20.0 
1   1   
2    2 2 
3  3    
4 4     
5 5 5 5 5  

Sum 9 8 6 7 2 
Average  4.5 4 3 3.5 2 

 

ARES1F:   
 

Ranking 
Vegetation Index Percentage (%) 

0.5 1.0 5.0 10.0 20.0 
1       1 1 
2 

 
  

 
2 2 

3 3 3 3     
4 

 
4 

 
    

5   5 5 5 5 
Sum 3 12 8 8 8 

Average  3 4 4 2.667 2.667 
 

ARES3D:   
 

Ranking 
Vegetation Index Percentage (%) 

0.5 1.0 5.0 10.0 20.0 
1       1 1 
2 

 
  2 2   

3 3 3 
 

    
4 

 
  

 
  4 

5 5 5 5 5 5 
Sum 8 8 7 8 10 

Average  4 4 3.5 2.667 3.333 



74 
 

ARES3F:   
 

Ranking 
Vegetation Index Percentage (%) 

0.5 1.0 5.0 10.0 20.0 
1     1 1 1 
2 

 
  2   2 

3 
 

3 3 3   
4 

 
4 

 
    

5 
 

  5 5   
Sum n/a 7 11 9 3 

Average  n/a 3.5 2.75 3 1.5 
 

ARES5:   
 

Ranking 
Vegetation Index Percentage (%) 

0.5 1.0 5.0 10.0 20.0 
1 1         
2 2   

 
    

3 
 

  3 3 3 
4 

 
4 

 
    

5 5         
Sum 8 4 3 3 3 

Average  2.667 4 3 3 3 
 

ARES6D_10kFT:   
 

Ranking 
Vegetation Index Percentage (%) 

0.5 1.0 5.0 10.0 20.0 
1 1       1 
2 

 
  2     

3 
 

3 
 

    
4 

 
  

 
4   

5 5 5   5 5 
Sum 6 8 2 9 6 

Average  3 4 2 4.5 3 
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Appendix C: Group 2 Performance Measure Tables 
 
Test Images  
 
ARES7F_10kFT: 4-Step ATR 
 
  Classification:  
Label Accuracy 1     
TPF 0.571429     
FPF 0     

      
Classification 
Confusion 
Matrix  "Target" "Background"   

 
Target 4 3   

 
Background 0 20   

      
Recognition 
Confusion 
Matrix   "M1" "HMMWV” "T-72" "Background" 

 
M1 0 0 0 0 

 
HMMWV 0 2 0 1 

 
T-72 2 0 0 2 

 
Background 0 0 0 20 

 
ARES7F_10kFT: 3-Step ATR 
 
  Classification:  
Label Accuracy 1     
TPF 0.571429     
FPF 0     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 4 3   
 Background 0 20   
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Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 0 
 HMMWV 0 2 0 1 
 T-72 2 0 0 2 
 Background 0 0 0 20 

 
ARES7F_10kFT: 2-Step ATR 
 
  Classification:  
Label Accuracy 0.259259     
TPF 1     
FPF 1     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 7 0   
 Background 20 0   
      
Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 0 
 HMMWV 1 2 0 0 
 T-72 3 1 0 0 
 Background 11 2 7 0 

 
ARES3D: 4-Step ATR 
 
  Classification:  
Label Accuracy 0.333333     
TPF 0.333333     
FPF 0.032787     
 
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 1 2   
 Background 2 59   
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Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 0 
 HMMWV 1 0 0 2 
 T-72 0 0 0 0 
 Background 0 0 2 59 

 
ARES3D: 3-Step ATR 
 
  Classification:  
Label Accuracy 0.6     
TPF 1     
FPF 0.032787     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 3 0   
 Background 2 59   
      
Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 0 
 HMMWV 3 0 0 0 
 T-72 0 0 0 0 
 Background 0 0 2 59 

 
 
ARES3D: 2-Step ATR 
 
  Classification:  
Label Accuracy 0.046875     
TPF 1     
FPF 1     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 3 0   
 Background 61 0   
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Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 0 
 HMMWV 3 0 0 0 
 T-72 0 0 0 0 
 Background 19 8 34 0 

 
ARES1D: 4-Step ATR 
 
  Classification:  
Label Accuracy 0     
TPF 0     
FPF 0.042017     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 0 9   
 Background 5 114   
      
Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 0 
 HMMWV 0 0 0 0 
 T-72 0 0 0 9 
 Background 1 0 4 114 

 
ARES1D: 3-Step ATR 
 
  Classification:  
Label Accuracy 0     
TPF 0     
FPF 0.042017     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 0 9   
 Background 5 114   
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Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 0 
 HMMWV 0 0 0 0 
 T-72 0 0 0 9 
 Background 1 0 4 114 

 
ARES1D: 2-Step ATR 
 
  Classification:  
Label Accuracy 0.070313     
TPF 1     
FPF 1     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 9 0   
 Background 119 0   
      
Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 0 
 HMMWV 0 0 0 0 
 T-72 3 0 6 0 
 Background 35 24 60 0 

 
ARES5F: 4-Step ATR 
 
  Classification:  
Label Accuracy NaN     
TPF 0     
FPF 0     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 0 2   
 Background 0 118   
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Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 2 
 HMMWV 0 0 0 0 
 T-72 0 0 0 0 
 Background 0 0 0 118 

 
ARES5F: 3-Step ATR 
 
  Classification:  
Label Accuracy 0     
TPF 0     
FPF 0.016949     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 0 2   
 Background 2 116   
      
Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 0 0 0 2 
 HMMWV 0 0 0 0 
 T-72 0 0 0 0 
 Background 2 0 0 116 

 
ARES5F: 2-Step ATR 
 
  Classification:  
Label Accuracy 0.016667     
TPF 1     
FPF 1     
      
Classification 
Confusion 
Matrix  "Target" "Background"   

 Target 2 0   
 Background 118 0   
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Recognition 
Confusion 
Matrix   "M1" "HMMWV" "T-72" "Background" 

 M1 2 0 0 0 
 HMMWV 0 0 0 0 
 T-72 0 0 0 0 
 Background 56 13 49 0 
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Appendix D: Storyboard  
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